

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Golang 101 hacks

This is an ongoing rudimentary Go programming language tutorial, and it will be updated non-periodically.

Project homepage

https://github.com/NanXiao/golang-101-hacks

License

MIT [https://github.com/NanXiao/golang-101-hacks/blob/master/LICENSE]

Summary

	How to build Go development environment

	Create Go workspace

	Package

	“go build” and “go install”

	“go get” command

	Use govendor to implement vendoring

	init function

	Short variable declaration

	“nil slice” vs “nil map”

	Prepend

	String

	The internals of slice

	Pass slice as a function argument

	Two-dimensional slice

	Reallocating underlying array of slice

	copy

	Array

	Conversion between array and slice

	Accessing map

	switch

	Interface

	Type assertion and type switch

	Types

	io.Reader interface

	Decorate types to implement io.Reader interface

	Buffered read

	io.Writer interface

	Check data race

	Sort

	range

	Debugging

	Goroutine

	Functional literals

	defer

	error vs errors

	Send and receive operations on channel

	Channel types

	Unbuffered and buffered channels

	nil channel VS closed channel

	Select operation

	Need not close every channel

	Processing JSON object

	Use sync.WaitGroup to synchronize goroutines

Accessing map

Map is a reference type which points to a hash table, and you can use it to construct a “key-value” database which is very handy in practice programming. E.g., the following code will calculate the count of every element in a slice:

package main

import (
	"fmt"
)

func main() {
	s := []int{1, 1, 2, 2, 3, 3, 3}
	m := make(map[int]int)

	for _, v := range s {
		m[v]++
	}

	for key, value := range m {
		fmt.Printf("%d occurs %d times\n", key, value)
	}
}

The output is like this:

3 occurs 3 times
1 occurs 2 times
2 occurs 2 times

Moreover, according to Go spec [https://golang.org/ref/spec#Map_types]: “A map is an unordered group of elements of one type, called the element type, indexed by a set of unique keys of another type, called the key type.”. So if you run the above program another time, the output may be different:

2 occurs 2 times
3 occurs 3 times
1 occurs 2 times

You must not presume the element order of a map.

The key type of the map must can be compared with “==” operator: the built-in types, such as int, string, etc, satisfy this requirement; while slice not. For struct type, if its members all can be compared by “==” operator, then this struct can also be used as key.

When you access a non-exist key of the map, the map will return the nil value of the element. I.e.:

package main

import (
	"fmt"
)

func main() {
	m := make(map[int]bool)

	m[0] = false
	m[1] = true

	fmt.Println(m[0], m[1], m[2])
}

The output is:

false true false

the value of m[0] and m[2] are both false, so you can’t discriminate whether the key is really in map or not. The solution is to use “comma ok” method:

value, ok := map[key]

if the key does exit, ok will be true; else ok will be false.

Sometimes, you may not care the values of the map, and use map just as a set. In this case, you can declare the value type as an empty struct: struct{}. An example is like this:

package main

import (
	"fmt"
)

func check(m map[int]struct{}, k int) {
	if _, ok := m[k]; ok {
		fmt.Printf("%d is a valid key\n", k)
	}
}
func main() {
	m := make(map[int]struct{})
	m[0] = struct{}{}
	m[1] = struct{}{}

	for i := 0; i <=2; i++ {
		check(m, i)
	}
}

The output is:

0 is a valid key
1 is a valid key

Using built-in delete function, you can remove an entry in the map, even the key doesn’t exist:

delete(map, key)

References:Effective Go [https://golang.org/doc/effective_go.html];The Go Programming Language Specification [https://golang.org/ref/spec];The Go Programming Language [http://www.gopl.io/].

Array

In Go, the length is also a part of array type. So the following code declares an array:

var array [3]int

while “var slice []int” defines a slice. Because of this characteristic, arrays with the same array element type but different length can’t assign values each other. I.E.:

package main

import "fmt"

func main() {
	var a1 [2]int
	var a2 [3]int
	a2 = a1
	fmt.Println(a2)
}

The compiler will complain:

cannot use a1 (type [2]int) as type [3]int in assignment

Changing “var a1 [2]int” to “var a1 [3]int” will make it work.

Another caveat you should pay attention to is the following code declares an array, not a slice:

array := [...]int {1, 2, 3}

You can verify it by the following code:

package main

import (
	"fmt"
	"reflect"
)

func main() {
	array := [...]int {1, 2, 3}
	slice := []int{1, 2, 3}
	fmt.Println(reflect.TypeOf(array), reflect.TypeOf(slice))
}

The output is:

[3]int []int

Additionally, since in Go, the function argument is passed by “value”, so if you use an array as a function argument, the function just does the operations on the copy of the original copy. Check the following code:

package main

import (
	"fmt"
)

func changeArray(array [3]int) {
	for i, _ := range array {
		array[i] = 1
	}
	fmt.Printf("In changeArray function, array address is %p, value is %v\n", &array, array)
}

func main() {
	var array [3]int

	fmt.Printf("Original array address is %p, value is %v\n", &array, array)
	changeArray(array)
	fmt.Printf("Changed array address is %p, value is %v\n", &array, array)
}

The output is:

Original array address is 0xc082008680, value is [0 0 0]
In changeArray function, array address is 0xc082008700, value is [1 1 1]
Changed array address is 0xc082008680, value is [0 0 0]

From the log, you can see the array’s address in changeArray function is not the same with array’s address in main function, so the content of original array will definitely not be modified. Furthermore, if the array is very large, copying them when passing argument to function may generate more overhead than you want, you should know about it.

Buffered read

bufio [https://golang.org/pkg/bufio/] package provides buffered read functions. Let’s see an example:

(1) Create a test.txt file first:

cat test.txt
abcd
efg
hijk
lmn

You can see test.txt contains 4 lines.

(2) See the following program:

package main

import (
 "bufio"
 "fmt"
 "io"
 "log"
 "os"
)

func main() {
 f, err := os.Open("test.txt")
 if err != nil {
 log.Fatal(err)
 }

 r := bufio.NewReader(f)
 for {
 if s, err := r.ReadSlice('\n'); err == nil || err == io.EOF {
 fmt.Printf("%s", s)
 if err == io.EOF {
 break
 }
 } else {
 log.Fatal(err)
 }

 }
}

(a)

f, err := os.Open("test.txt")

Open test.txt file.

(b)

r := bufio.NewReader(f)

bufio.NewReader(f) creates a bufio.Reader [https://golang.org/pkg/bufio/#Reader] struct which implements buffered read function.

(c)

for {
	if s, err := r.ReadSlice('\n'); err == nil || err == io.EOF {
		fmt.Printf("%s", s)
		if err == io.EOF {
			break
		}
	} else {
		log.Fatal(err)
	}

}
	

Read and print each line.

The running result is here:

abcd
efg
hijk
lmn

We can also use bufio.Scanner [https://golang.org/pkg/bufio/#Scanner] to implement above “print each line” function:

package main

import (
 "bufio"
 "fmt"
 "log"
 "os"
)

func main() {
 f, err := os.Open("test.txt")
 if err != nil {
 log.Fatal(err)
 }

 s := bufio.NewScanner(f)

 for s.Scan() {
 fmt.Println(s.Text())
 }
}

(a)

s := bufio.NewScanner(f)

bufio.NewScanner(f) creates a new bufio.Scanner [https://golang.org/pkg/bufio/#Scanner] struct which splits the content by line by default.

(b)

for s.Scan() {
	fmt.Println(s.Text())
}

s.Scan() advances the bufio.Scanner to the next token (in this case, it is one optional carriage return followed by one mandatory newline), and we can use s.Text() function to get the content.

We can also customize SplitFunc [https://golang.org/pkg/bufio/#SplitFunc] function which doesn’t separate content by line. Check the following code:

package main

import (
 "bufio"
 "fmt"
 "log"
 "os"
)

func main() {
 f, err := os.Open("test.txt")
 if err != nil {
 log.Fatal(err)
 }

 s := bufio.NewScanner(f)
 split := func(data []byte, atEOF bool) (advance int, token []byte, err error) {
 for i := 0; i < len(data); i++ {
 if data[i] == 'h' {
 return i + 1, data[:i], nil
 }
 }

 return 0, data, bufio.ErrFinalToken
 }
 s.Split(split)
 for s.Scan() {
 fmt.Println(s.Text())
 }
}

The split function separates the content by “h”, and the running result is:

abcd
efg

ijk
lmn

Channel types

When declaring variables of channel type, the most common instances are like this (T is any valid type):

var v chan T

But you may also see examples as follows :

var v <-chan T

Or:

var v chan<- T

What the hell are the differences among these 3 definitions? The distinctions are here:

(1) chan T: The channel can receive and send T type data;(2) <-chan T: The channel is read-only, which means you can only receive T type data from this channel;(2) chan<- T: The channel is write-only, which means you can only send T type data to this channel.

The mnemonics is correlating them with channel operations:

v := <-ch // Receive from ch, and assign value to v.
ch <- v // Send v to channel ch.

<-chan T is similar to v := <-ch, so it is a receive-only channel, and it is the same as chan<- T and ch <- v.

Restricting a channel type (read-only or write-only) can let compiler do strict checks for you. For example:

package main

func f() (<-chan int) {
	ch := make(chan int)
	return ch
}

func main() {
	r := f()
	r <- 1
}

The compilation generates following errors:

invalid operation: r <- 1 (send to receive-only type <-chan int)

Furthermore, the <- operator associates with the leftmost chan possible, i.e., chan<- chan int and chan (<-chan int) aren’t equal: the previous is same as chan<- (chan int), which defines a write-only channel whose data type is a channel who can receive and send int data; while chan (<-chan int) defines a write-and-read channel whose data type is a channel who can only receive int data.

References:Channel types [https://nanxiao.gitbooks.io/golang-101-hacks/content/posts/unbuffered-and-buffered-channels.html];How to understand “<-chan” in declaration? [https://groups.google.com/forum/#%21topic/golang-nuts/ul_K7S3EtOk].

Check data race

“Data race” is a common but notorious issue in concurrency programs. sometimes it is difficult to debug and reproduce, especially in some big system, so this will make people very frustrated. Thankfully, the Go toolchain provides a race detector (now only works on amd64 platform.) which can help us quickly spot and fix this kind of issue, and this can save our time even lives!

Take the following classic “data race” program as an example:

package main

import (
 "fmt"
 "sync"
)

var global int
var wg sync.WaitGroup

func count() {
 defer wg.Done()
 for i := 0; i < 10000; i++{
 global++
 }
}

func main() {
 wg.Add(2)
 go count()
 go count()
 wg.Wait()
 fmt.Println(global)
}

Two tasks increase global variable simultaneously, so the final value of global is non-deterministic. Using race detector to check it:

go run -race race.go
==================
WARNING: DATA RACE
Read by goroutine 7:
 main.count()
 /root/gocode/src/race.go:14 +0x6d

Previous write by goroutine 6:
 main.count()
 /root/gocode/src/race.go:14 +0x89

Goroutine 7 (running) created at:
 main.main()
 /root/gocode/src/race.go:21 +0x6d

Goroutine 6 (running) created at:
 main.main()
 /root/gocode/src/race.go:20 +0x55
==================
19444
Found 1 data race(s)
exit status 66

Cool! the race detector finds the issue precisely, and it also provides the detailed tips of how to modifying it. Adding the lock of writing the global variable:

package main

import (
	"fmt"
	"sync"
)

var global int
var wg sync.WaitGroup
var w sync.Mutex

func count() {
	defer wg.Done()
	for i := 0; i < 10000; i++{
		w.Lock()
		global++
		w.Unlock()
	}
}

func main() {
	wg.Add(2)
	go count()
	go count()
	wg.Wait()
	fmt.Println(global)
}

This time, race detector is calm:

go run -race non_race.go
20000

Please be accustomed to use this powerful tool frequently, you will appreciate it, I promise!

Reference:Introducing the Go Race Detector [https://blog.golang.org/race-detector].

Conversion between array and slice

In Go, array is a fixed length of continuous memory with specified type, while slice is just a reference which points to an underlying array. Since they are different types, they can’t assign value each other directly. See the following example:

package main

import "fmt"

func main() {
	s := []int{1, 2, 3}
	var a [3]int

	fmt.Println(copy(a, s))
}

Because copy only accepts slice argument, we can use the [:] to create a slice from array. Check next code:

package main

import "fmt"

func main() {
	s := []int{1, 2, 3}
	var a [3]int

	fmt.Println(copy(a[:2], s))
	fmt.Println(a)
}

The running output is:

2
[1 2 0]

The above example is copying value from slice to array, and the opposite operation is similar:

package main

import "fmt"

func main() {
	a := [...]int{1, 2, 3}
	s := make([]int, 3)

	fmt.Println(copy(s, a[:2]))
	fmt.Println(s)
}

The execution result is:

2
[1 2 0]

References:In golang how do you convert a slice into an array [http://stackoverflow.com/questions/19073769/in-golang-how-do-you-convert-a-slice-into-an-array];Arrays, slices (and strings): The mechanics of ‘append’ [https://blog.golang.org/slices].

copy

The definition of built-in copy function is here [https://golang.org/pkg/builtin/#copy]:

func copy(dst, src []Type) int

The copy built-in function copies elements from a source slice into a destination slice. (As a special case, it also will copy bytes from a string to a slice of bytes.) The source and destination may overlap. Copy returns the number of elements copied, which will be the minimum of len(src) and len(dst).

Let’s see a basic example in which source and destination slices aren’t overlapped:

package main

import (
	"fmt"
)

func main() {
	d := make([]int, 3, 5)
	s := []int{2, 2}
	fmt.Println("Before copying (destination slice): ", d)
	fmt.Println("Copy length is: ", copy(d, s))
	fmt.Println("After copying (destination slice): ", d)

	d = make([]int, 3, 5)
	s = []int{2, 2, 2}
	fmt.Println("Before copying (destination slice): ", d)
	fmt.Println("Copy length is: ", copy(d, s))
	fmt.Println("After copying (destination slice): ", d)

	d = make([]int, 3, 5)
	s = []int{2, 2, 2, 2}
	fmt.Println("Before copying (destination slice): ", d)
	fmt.Println("Copy length is: ", copy(d, s))
	fmt.Println("After copying (destination slice): ", d)

}

In the above example, the destination slice’s length is 3, and the source slice’s length can be 2, 3, 4. Check the result:

Before copying (destination slice): [0 0 0]
Copy length is: 2
After copying (destination slice): [2 2 0]
Before copying (destination slice): [0 0 0]
Copy length is: 3
After copying (destination slice): [2 2 2]
Before copying (destination slice): [0 0 0]
Copy length is: 3
After copying (destination slice): [2 2 2]

We can make sure the number of copied elements is indeed the minimum length of source and destination slices.

Let’s check the overlapped case:

package main

import (
	"fmt"
)

func main() {
	d := []int{1, 2, 3}
	s := d[1:]

	fmt.Println("Before copying: ", "source is: ", s, "destination is: ", d)
	fmt.Println(copy(d, s))
	fmt.Println("After copying: ", "source is: ", s, "destination is: ", d)

	s = []int{1, 2, 3}
	d = s[1:]

	fmt.Println("Before copying: ", "source is: ", s, "destination is: ", d)
	fmt.Println(copy(d, s))
	fmt.Println("After copying: ", "source is: ", s, "destination is: ", d)
}

The result is like this:

Before copying: source is: [2 3] destination is: [1 2 3]
2
After copying: source is: [3 3] destination is: [2 3 3]
Before copying: source is: [1 2 3] destination is: [2 3]
2
After copying: source is: [1 1 2] destination is: [1 2]

Through the output, we can see no matter the source slice is ahead of destination or not, the result is always as expected. You can think the implementation is like this: the data from source slice are copied to a temporary place first, then the elements are copied from temporary to destination slice.

copy requires the source and destination slices are the same type, and an exception is the source is string while the destination is []byte:

package main

import (
	"fmt"
)

func main() {
	d := make([]byte, 20, 30)
	fmt.Println(copy(d, "Hello, 中国"))
	fmt.Println(string(d))
}

The output is:

13
Hello, 中国

Reference:copy() behavior when overlapping [https://groups.google.com/forum/#%21msg/Golang-Nuts/HI6RI18S8L0/v6xevVPeS9EJ].

Create Go workspace

Once the Go build environment is ready, the next step is to create workspace for development:

(1) Set up a new empty directory:

mkdir gowork

(2) Use a new environment variable $GOPATH to point it:

cat /etc/profile
......
GOPATH=/root/gowork
export GOPATH
......

The workspace should contain 3 subdirectories:

src: contains the Go source code.pkg: contains the package objects. You could think them as libraries which are used in linkage stage to generate the final executable files.bin: contains the executable files.

Let’s see an example:

(1) Create a src directory in $GOPATH, which is /root/gowork in my system:

mkdir src
tree
.
└── src

1 directory, 0 files

(2) Since Go organizes source code using “package” concept , and every “package” should occupy a distinct directory, I create a greet directory in src:

mkdir src/greet

Then create a new Go source code file (greet.go) in src/greet:

cat src/greet/greet.go
package greet

import "fmt"

func Greet() {
 fmt.Println("Hello 中国!")
}

You can consider this greet directory provides a greet package which can be used by other programs.

(3) Create another package hello which utilizes the greet package:

mkdir src/hello
cat src/hello/hello.go
package main

import "greet"

func main() {
 greet.Greet()
}

You can see in hello.go, the main function calls Greet function offered by greet package.

(4) Now our $GOPATH layout is like this:

tree
.
└── src
 ├── greet
 │ └── greet.go
 └── hello
 └── hello.go

3 directories, 2 files

Let’s compile and install hello package:

go install hello

Check the $GOPATH layout again:

tree
.
├── bin
│ └── hello
├── pkg
│ └── linux_amd64
│ └── greet.a
└── src
 ├── greet
 │ └── greet.go
 └── hello
 └── hello.go

6 directories, 4 files

You can see the executable command hello is generated in bin folder. Because hello needs greet package’s help, a greet.a object is also produced in pkg directory, but in system related subdirectory: linux_amd64.

Run hello command:

./bin/hello
Hello 中国!

Working as expected!

(5) You should add $GOPATH/bin to $PATH environment variable for facility:

PATH=$PATH:$GOPATH/bin
export PATH

Then you can run hello directly:

hello
Hello 中国!

Reference:How to Write Go Code [https://golang.org/doc/code.html].

Debugging

No one can write bug-free code, so debugging is a requisite skill for every software engineer. Here are some tips about debugging Go programs:

(1) PrintYes! Printing logs seems the easiest method, but it is indeed the most effective approach in most cases. Go has provided a big family of printing functions in fmt [https://golang.org/pkg/fmt/] package, and using them neatly is an expertise you should grasp.

(2) DebuggerIn some scenarios, maybe you need the specialized debugger tools to help you spot the root cause. You can use gdb, but since “GDB does not understand Go programs well.” (from here [https://golang.org/doc/gdb]), I suggest taking Delve [https://github.com/derekparker/delve], a dedicated debugger for Go, instead.

No matter using gdb or Delve, if you want to debug the executable file, you must pass -gcflags "-N -l" during compiling binary to disable code optimization, else some weird things can happen during debugging, such as you can’t print the value of an already declared variable.

Except debugging the precompiled file, Delve can compile and debug the code on the fly, see the following example:

package main

import "fmt"

func main() {
	ch := make(chan int)
	go func(chan int) {
		for _, v := range []int{1, 2} {
			ch <- v
		}
		close(ch)
	}(ch)

	for v := range ch {
		fmt.Println(v)
	}
	fmt.Println("The channel is closed.")
}

Debugging flow is like this:

dlv debug channel.go
Type 'help' for list of commands.
(dlv) b channel.go:14
Breakpoint 1 set at 0x401079 for main.main() ./channel.go:14
(dlv) c
> main.main() ./channel.go:14 (hits goroutine(1):1 total:1) (PC: 0x401079)
 9: ch <- v
 10: }
 11: close(ch)
 12: }(ch)
 13:
=> 14: for v := range ch {
 15: fmt.Println(v)
 16: }
 17: fmt.Println("The channel is closed.")
 18: }
(dlv) n
> main.main() ./channel.go:15 (PC: 0x4010c9)
 10: }
 11: close(ch)
 12: }(ch)
 13:
 14: for v := range ch {
=> 15: fmt.Println(v)
 16: }
 17: fmt.Println("The channel is closed.")
 18: }
(dlv) p v
1
(dlv) goroutine
Thread 12380 at ./channel.go:15
Goroutine 1:
 Runtime: /usr/local/go/src/runtime/proc.go:263 runtime.gopark (0x42a283)
 User: ./channel.go:15 main.main (0x4010c9)
 Go: /usr/local/go/src/runtime/asm_amd64.s:145 runtime.rt0_go (0x453321)
(dlv) goroutines
[5 goroutines]
* Goroutine 1 - User: ./channel.go:15 main.main (0x4010c9)
 Goroutine 2 - User: /usr/local/go/src/runtime/proc.go:263 runtime.gopark (0x42a283)
 Goroutine 3 - User: /usr/local/go/src/runtime/proc.go:263 runtime.gopark (0x42a283)
 Goroutine 4 - User: /usr/local/go/src/runtime/proc.go:263 runtime.gopark (0x42a283)
 Goroutine 5 - User: ./channel.go:9 main.main.func1 (0x4013a8)
(dlv)

Compared with gdb, Delve doesn’t provide start command, so you need to set breakpoint first, then run continue command. You can see, Delve provides fruitful commands, e.g., you can check every goroutine status, so I think you should practice it frequently, and you will love it!

Happy debugging!

Decorate types to implement io.Reader interface

The io package [https://golang.org/pkg/io/] has provided a bunch of handy read functions and methods, but unfortunately, they all require the arguments satisfy io.Reader [https://golang.org/pkg/io/#Reader] interface. See the following example:

package main

import (
	"fmt"
	"io"
)

func main() {
	s := "Hello, world!"
	p := make([]byte, len(s))
	if _, err := io.ReadFull(s, p); err != nil {
		fmt.Println(err)
	} else {
		fmt.Printf("%s\n", p)
	}
}

Compile above program and an error is generated:

read.go:11: cannot use s (type string) as type io.Reader in argument to io.ReadFull:
 string does not implement io.Reader (missing Read method)

The io.ReadFull [https://golang.org/pkg/io/#ReadFull] function requires the argument should be compliance with io.Reader, but string type doesn’t provide Read() method, so we need to do some tricks on s variable. Modify io.ReadFull(s, p) into io.ReadFull(strings.NewReader(s), p):

package main

import (
	"fmt"
	"io"
	"strings"
)

func main() {
	s := "Hello, world!"
	p := make([]byte, len(s))
	if _, err := io.ReadFull(strings.NewReader(s), p); err != nil {
		fmt.Println(err)
	} else {
		fmt.Printf("%s\n", p)
	}
}

This time, the compilation is OK, and the running result is:

Hello, world!

strings.NewReader [https://golang.org/pkg/strings/#NewReader] function converts a string into a strings.Reader [https://golang.org/pkg/bytes/#Reader] struct which supplies a read [https://golang.org/pkg/bytes/#Reader.Read] method:

func (r *Reader) Read(b []byte) (n int, err error)

Besides string, another common operation is to use bytes.NewReader [https://golang.org/pkg/bytes/#NewReader] to convert a byte slice into a bytes.Reader [https://golang.org/pkg/bytes/#Reader] struct which satisfies io.Reader interface. Do some modifications on the above example:

 package main

import (
	"bytes"
	"fmt"
	"io"
	"strings"
)

func main() {
	s := "Hello, world!"
	p := make([]byte, len(s))
	if _, err := io.ReadFull(strings.NewReader(s), p); err != nil {
		fmt.Println(err)
	}

	r := bytes.NewReader(p)
	if b, err := r.ReadByte(); err != nil {
		fmt.Println(err)
	} else {
		fmt.Printf("%c\n", b)
	}
}

bytes.NewReader converts the p slice into a bytes.Reader struct. The output is like this:

H

defer

The defer statement is used to postpone a function call executed immediately before the surrounding function returns. The common uses of defer include releasing resources (i.e., unlock the mutex, close file handle.), do some tracing(i.e., record the running time of function), etc. E.g., an ordinary accessing global variable exclusively is like this:

var mu sync.Mutex
var m = make(map[string]int)

func lookup(key string) int {
	mu.Lock()
	v := m[key]
	mu.Unlock()
	return v
}

An equivalent but concise format using defer is as follow:

var mu sync.Mutex
var m = make(map[string]int)

func lookup(key string) int {
	mu.Lock()
	defer mu.Unlock()
	return m[key]
}

You can see this style is more simpler and easier to comprehend.

The defer statements are executed in Last-In-First-Out sequence, which means the functions in latter defer statements run before their previous buddies. Check the following example:

package main

import "fmt"

func main() {
	defer fmt.Println("First")
	defer fmt.Println("Last")
}

The running result is here:

Last
First

Although the function in defer statement runs very late, the parameters of the function are evaluated when the defer statement is executed.

package main

import "fmt"

func main() {
	i := 10
	defer fmt.Println(i)
	i = 100
}

The running result is here:

10

Besides, if the deferred function is a function literal, it can also modify the return value:

package main

import "fmt"

func modify() (result int) {
	defer func(){result = 1000}()
	return 100
}

func main() {
	fmt.Println(modify())
}

The value printed is 1000, not 100.

References:The Go Programming Language [http://www.gopl.io/];Defer, Panic, and Recover [https://blog.golang.org/defer-panic-and-recover].

error vs errors

Handling errors is a crucial part of writing robust programs. When scanning the Go packages, it is not rare to see APIs which have multiple return values with an error among them. For example:

func Open(name string) (*File, error)

Open opens the named file for reading. If successful, methods on the returned file can be used for reading; the associated file descriptor has mode O_RDONLY. If there is an error, it will be of type *PathError.

And the idiomatic method of using os.Open function is like this:

file, err := os.Open("file.go") // For read access.
if err != nil {
	log.Fatal(err)
}
defer file.Close()

So to implement resilient Go programs, how to generate and deal with errors is a required course.

Go provides both error and errors, and you shouldn’t mix up them. error is a built-in interface type:

type error interface {
 Error() string
}

So for any type, as long as it implements Error() string method, it will satisfy error interface automatically. errors is one of my favorite packages since it is very simple (The life will definitely be easier if every package is similar to errors!). Removing the comments, the amount of core code lines is very small:

package errors

func New(text string) error {
	return &errorString{text}
}

type errorString struct {
	s string
}

func (e *errorString) Error() string {
	return e.s
}

The New function in errors package returns an errorString struct which complies with error interface. Check the following example:

package main

import (
	"errors"
	"fmt"
)

func maxElem(s []int) (int, error) {
	if len(s) == 0 {
		return 0, errors.New("The slice must be non-empty!")
	}

	max := s[0]
	for _, v := range s[1:] {
		if v > max {
			max = v
		}
	}
	return max, nil
}

func main() {
	s := []int{}
	_, err := maxElem(s)
	if err != nil {
		fmt.Println(err)
	}
}

The execution result is here:

The slice must be non-empty!

In real life, you may prefer to use Errorf function defined in fmt package to create error interface, rather than use errors.New() directly:

func Errorf(format string, a …interface{}) error

Errorf formats according to a format specifier and returns the string as a value that satisfies error.

So the above code can be refactored as follows:

func maxElem(s []int) (int, error) {

	if len(s) == 0 {
		return 0, fmt.Errorf("The slice must be non-empty!")
	}

}

References:The Go Programming Language [http://www.gopl.io/].

Functional literals

A functional literal just represents an anonymous function. You can assign functional literal to a variable:

package main

import (
	"fmt"
)

func main() {
	f := func() { fmt.Println("Hello, 中国！") }
	f()
}

Or invoke functional literal directly (Please notice the () at the end of functional literal):

package main

import (
	"fmt"
)

func main() {
	func() { fmt.Println("Hello, 中国！") }()
}

The above 2 programs both output “Hello, 中国！”.

Functional literal is also a closure, so it can access the variables of its surrounding function. Check the following example which your real intention is 1 and 2 are printed:

package main

import (
	"fmt"
	"time"
)

func main() {
	for i := 1; i <= 2; i++ {
		go func() {fmt.Println(i)}()
	}
	time.Sleep(time.Second)
}

But the output is:

3
3

The cause is the func goroutines don’t get the opportunity to run until the main goroutine sleeps, and at that time, the variable i has been changed to 3. Modify the above program as follows:

package main

import (
	"fmt"
	"time"
)

func main() {
	for i := 1; i <= 2; i++ {
		go func() {fmt.Println(i)}()
		time.Sleep(time.Second)
	}
}

The func goroutine can run before i is changed, so the running result is what you expect:

1
2

But the idiom method should be passing i as an argument of the functional literal:

package main

import (
	"fmt"
	"time"
)

func main() {
	for i := 1; i <= 2; i++ {
		go func(i int) {fmt.Println(i)}(i)
	}
	time.Sleep(time.Second)
}

In above program, When “go func(i int) {fmt.Println(i)}(i)” is executed (Note: not goroutine is executed.), i defined in main() is assigned to func’s local parameter i. And the result is:

1
2

P.S. You should notice, If you pass an argument while not use it, the Go compiler doesn’t complain, but the closure will use the variable inherited from the parent function. That means the following statement:

go func(int) {fmt.Println(i)}(i)

equals to:

go func() {fmt.Println(i)}()

References:The Go Programming Language Specification [https://golang.org/ref/spec#Function_literals];A question about passing arguments to closure [https://groups.google.com/forum/#%21topic/golang-nuts/JXTEYyoPLio];Why add “()” after closure body in Golang? [http://stackoverflow.com/questions/16008604/why-add-after-closure-body-in-golang].

“go build” and “go install”

Let’s tidy up the $GOPATH directory and only keep Go source code files left over:

tree
.
├── bin
├── pkg
└── src
 ├── greet
 │ └── greet.go
 └── hello
 └── hello.go

5 directories, 2 files

The greet.go is greet package which just provides one function:

cat src/greet/greet.go
package greet

import "fmt"

func Greet() {
 fmt.Println("Hello 中国!")
}

While hello.go is a main package which takes advantage of greet and can be built into an executable binary:

cat src/hello/hello.go
package main

import "greet"

func main() {
 greet.Greet()
}

(1) Enter the src/hello directory, and execute go build command:

pwd
/root/gowork/src/hello
go build
ls
hello hello.go
./hello
Hello 中国!

We can see a fresh hello command is created in the current directory.

Check the $GOPATH directory:

tree
.
├── bin
├── pkg
└── src
 ├── greet
 │ └── greet.go
 └── hello
 ├── hello
 └── hello.go

5 directories, 3 files

Compared before executing go build, there is only a final executable command more.

(2) Clear the $GOPATH directory again:

tree
.
├── bin
├── pkg
└── src
 ├── greet
 │ └── greet.go
 └── hello
 └── hello.go

5 directories, 2 files

Running go install in hello directory:

pwd
/root/gowork/src/hello
go install
#

Check the $GOPATH directory now:

tree
.
├── bin
│ └── hello
├── pkg
│ └── linux_amd64
│ └── greet.a
└── src
 ├── greet
 │ └── greet.go
 └── hello
 └── hello.go

6 directories, 4 files

Not only the hello command is generated and put into bin directory, but also the greet.a is in the pkg/linux_amd64. While the src folder keeps clean with only source code files in it and unchanged.

(3) There is -i flag in go build command which will install the packages that are dependencies of the target, but won’t install the target. Let’s check it:

tree
.
├── bin
├── pkg
└── src
 ├── greet
 │ └── greet.go
 └── hello
 └── hello.go

5 directories, 2 files

Run go build -i under hello directory:

pwd
#/root/gowork/src/hello
go build -i

Check $GOPATH now:

tree
.
├── bin
├── pkg
│ └── linux_amd64
│ └── greet.a
└── src
 ├── greet
 │ └── greet.go
 └── hello
 ├── hello
 └── hello.go

Except a hello command in src/hello directory, a greet.a library is also generated in pkg/linux_amd64 too.

(4) By default, the go build uses the directory’s name as the compiled binary’s name, to modify it, you can use -o flag:

pwd
/root/gowork/src/hello
go build -o he
ls
he hello.go

Now, the command is he, not hello.

“go get” command

“go get” command is the standard way of downloading and installing packages and related dependencies, and let’s check the particulars of it through an example:(1) Create a playstack [https://github.com/NanXiao/playstack] repository in github;(2) There is a LICENSE file and play directory in playstack folder;(3) The play directory includes one main.go file:

package main

import (
	"fmt"
	"github.com/NanXiao/stack"
)

func main() {
	s := stack.New()
	s.Push(0)
	s.Push(1)
	s.Pop()
	fmt.Println(s)
}

The main package has one dependency package: stack [https://github.com/NanXiao/stack]. Actually, the main() function doesn’t play anything meaningful, and we just use this project as a sample. So the directory structure of playstack looks like this:

.
├── LICENSE
└── play
 └── main.go

1 directory, 2 files

Clean the $GOPATH directory, and use “go get” command to download playstack:

tree
.

0 directories, 0 files
go get github.com/NanXiao/playstack
package github.com/NanXiao/playstack: no buildable Go source files in /root/gocode/src/github.com/NanXiao/playstack

“go get” command complains “no buildable Go source files in ...”, and it is because the objects which “go get” works are packages, not repositories.There is no *.go source files in playstack, so it is not a valid package.

Tidy up $GOPATH folder, and execute “go get github.com/NanXiao/playstack/play” instead:

tree
.

0 directories, 0 files
go get github.com/NanXiao/playstack/play
tree
.
├── bin
│ └── play
├── pkg
│ └── linux_amd64
│ └── github.com
│ └── NanXiao
│ └── stack.a
└── src
 └── github.com
 └── NanXiao
 ├── playstack
 │ ├── LICENSE
 │ └── play
 │ └── main.go
 └── stack
 ├── LICENSE
 ├── README.md
 ├── stack.go
 └── stack_test.go

11 directories, 8 files

We can see not only playstack and its dependency (stack) are all downloaded, but also the command (play) and library (stack) are all installed in the right place.

The mechanism behind “go get” command is it will fetch the repositories of packages and dependencies (E.g., use “git clone”.), and you can check the detailed workflow by “go get -x”:

tree
.

0 directories, 0 files
go get -x github.com/NanXiao/playstack/play
cd .
git clone https://github.com/NanXiao/playstack /root/gocode/src/github.com/NanXiao/playstack
cd /root/gocode/src/github.com/NanXiao/playstack
git submodule update --init --recursive
cd /root/gocode/src/github.com/NanXiao/playstack
git show-ref
cd /root/gocode/src/github.com/NanXiao/playstack
git submodule update --init --recursive
cd .
git clone https://github.com/NanXiao/stack /root/gocode/src/github.com/NanXiao/stack
cd /root/gocode/src/github.com/NanXiao/stack
git submodule update --init --recursive
cd /root/gocode/src/github.com/NanXiao/stack
git show-ref
cd /root/gocode/src/github.com/NanXiao/stack
git submodule update --init --recursive
WORK=/tmp/go-build054180753
mkdir -p $WORK/github.com/NanXiao/stack/_obj/
mkdir -p $WORK/github.com/NanXiao/
cd /root/gocode/src/github.com/NanXiao/stack
/usr/local/go/pkg/tool/linux_amd64/compile -o $WORK/github.com/NanXiao/stack.a -trimpath $WORK -p github.com/NanXiao/stack -complete -buildid de4d90fa03d8091e075c1be9952d691376f8f044 -D _/root/gocode/src/github.com/NanXiao/stack -I $WORK -pack ./stack.go
mkdir -p /root/gocode/pkg/linux_amd64/github.com/NanXiao/
mv $WORK/github.com/NanXiao/stack.a /root/gocode/pkg/linux_amd64/github.com/NanXiao/stack.a
mkdir -p $WORK/github.com/NanXiao/playstack/play/_obj/
mkdir -p $WORK/github.com/NanXiao/playstack/play/_obj/exe/
cd /root/gocode/src/github.com/NanXiao/playstack/play
/usr/local/go/pkg/tool/linux_amd64/compile -o $WORK/github.com/NanXiao/playstack/play.a -trimpath $WORK -p main -complete -buildid e9a3c02979f7c6e57ce4452278c52e3e0e6a48e8 -D _/root/gocode/src/github.com/NanXiao/playstack/play -I $WORK -I /root/gocode/pkg/linux_amd64 -pack ./main.go
cd .
/usr/local/go/pkg/tool/linux_amd64/link -o $WORK/github.com/NanXiao/playstack/play/_obj/exe/a.out -L $WORK -L /root/gocode/pkg/linux_amd64 -extld=gcc -buildmode=exe -buildid=e9a3c02979f7c6e57ce4452278c52e3e0e6a48e8 $WORK/github.com/NanXiao/playstack/play.a
mkdir -p /root/gocode/bin/
mv $WORK/github.com/NanXiao/playstack/play/_obj/exe/a.out /root/gocode/bin/play

From the above output, we can see playstack repository is cloned first, then stack, At last the compilation and installation are executed.

If you only want to download the source files, and not compile and install, using “go get -d” command:

tree
.

0 directories, 0 files
go get -d github.com/NanXiao/playstack/play
tree
.
└── src
 └── github.com
 └── NanXiao
 ├── playstack
 │ ├── LICENSE
 │ └── play
 │ └── main.go
 └── stack
 ├── LICENSE
 ├── README.md
 ├── stack.go
 └── stack_test.go

6 directories, 6 files

You can also use “go get -u” to update packages and their dependencies.

Reference:Command go [https://golang.org/cmd/go/#hdr-Download_and_install_packages_and_dependencies];How does “go get” command know which files should be downloaded? [https://groups.google.com/forum/#%21topic/golang-nuts/-V9QR8ncf4w].

Goroutine

A running Go program is composed of one or more goroutines, and each goroutine can be considered as an independent task. Goroutine and thread have many commonalities, such as: every goroutine(thread) has its private stack and registers; if the main goroutine(thread) exits, the program will exit, and so on. But on modern Operating System (E.g., Linux), the actual execution and scheduled unit is thread, so if a goroutine wants to become running, it must “attach” to a thread. Let’s see an example:

package main

import (
	"time"
)

func main() {
	time.Sleep(1000 * time.Second)
}

What the program does is just sleeping for a while, not does anything useful. After launching it on Linux, use Delve to attach the running process and observe the details of it:

(dlv) threads
* Thread 1040 at 0x451f73 /usr/local/go/src/runtime/sys_linux_amd64.s:307 runtime.futex
 Thread 1041 at 0x451f73 /usr/local/go/src/runtime/sys_linux_amd64.s:307 runtime.futex
 Thread 1042 at 0x451f73 /usr/local/go/src/runtime/sys_linux_amd64.s:307 runtime.futex
 Thread 1043 at 0x451f73 /usr/local/go/src/runtime/sys_linux_amd64.s:307 runtime.futex
 Thread 1044 at 0x451f73 /usr/local/go/src/runtime/sys_linux_amd64.s:307 runtime.futex

We can see there are 5 threads of this process, let’s confirm it by checking /proc/1040/task/ directory:

cd /proc/1040/task/
ls
1040 1041 1042 1043 1044

Yeah, the thread information of Delve is right! Check the particulars of goroutines:

(dlv) goroutines
[4 goroutines]
 Goroutine 1 - User: /usr/local/go/src/runtime/time.go:59 time.Sleep (0x43e236)
 Goroutine 2 - User: /usr/local/go/src/runtime/proc.go:263 runtime.gopark (0x426f73)
 Goroutine 3 - User: /usr/local/go/src/runtime/proc.go:263 runtime.gopark (0x426f73)
* Goroutine 4 - User: /usr/local/go/src/runtime/lock_futex.go:206 runtime.notetsleepg (0x40b1ce)

There is only one main goroutine, what the hell of the other 3 goroutines? Actually, the other 3 goroutines are system goroutines, and you can refer related info here [https://github.com/derekparker/delve/issues/553]. The number of main goroutine is 1, and you can inspect it:

(dlv) goroutine 1
Switched from 4 to 1 (thread 1040)
(dlv) bt
0 0x0000000000426f73 in runtime.gopark
 at /usr/local/go/src/runtime/proc.go:263
1 0x0000000000426ff3 in runtime.goparkunlock
 at /usr/local/go/src/runtime/proc.go:268
2 0x000000000043e236 in time.Sleep
 at /usr/local/go/src/runtime/time.go:59
3 0x0000000000401013 in main.main
 at ./gocode/src/goroutine.go:8
4 0x0000000000426b9b in runtime.main
 at /usr/local/go/src/runtime/proc.go:188
5 0x0000000000451000 in runtime.goexit
 at /usr/local/go/src/runtime/asm_amd64.s:1998

Using go keyword can create and start a goroutine, see another case:

package main

import (
	"fmt"
	"time"
)

func main() {
	ch := make(chan int)

	go func(chan int) {
		var count int
		for {
			count++
			ch <- count
			time.Sleep(10 * time.Second)
		}
	}(ch)

	for v := range ch {
		fmt.Println(v)
	}
}

The go func statement spawns another goroutine which works as a producer; while the main goroutine behaves as a consumer. And the output should be:

1
2
......

Use Delve to check the goroutine aspects:

(dlv) goroutines
[6 goroutines]
 Goroutine 1 - User: ./gocode/src/goroutine.go:20 main.main (0x40106c)
 Goroutine 2 - User: /usr/local/go/src/runtime/proc.go:263 runtime.gopark (0x429fc3)
 Goroutine 3 - User: /usr/local/go/src/runtime/proc.go:263 runtime.gopark (0x429fc3)
 Goroutine 4 - User: /usr/local/go/src/runtime/proc.go:263 runtime.gopark (0x429fc3)
 Goroutine 5 - User: /usr/local/go/src/runtime/time.go:59 time.Sleep (0x442ab6)
* Goroutine 6 - User: /usr/local/go/src/runtime/lock_futex.go:206 runtime.notetsleepg (0x40cf4e)
(dlv) goroutine 1
Switched from 6 to 1 (thread 1997)
(dlv) bt
0 0x0000000000429fc3 in runtime.gopark
 at /usr/local/go/src/runtime/proc.go:263
1 0x000000000042a043 in runtime.goparkunlock
 at /usr/local/go/src/runtime/proc.go:268
2 0x00000000004047eb in runtime.chanrecv
 at /usr/local/go/src/runtime/chan.go:470
3 0x0000000000404354 in runtime.chanrecv2
 at /usr/local/go/src/runtime/chan.go:360
4 0x000000000040106c in main.main
 at ./gocode/src/goroutine.go:20
5 0x0000000000429beb in runtime.main
 at /usr/local/go/src/runtime/proc.go:188
6 0x0000000000455de0 in runtime.goexit
 at /usr/local/go/src/runtime/asm_amd64.s:1998
(dlv) goroutine 5
Switched from 1 to 5 (thread 1997)
(dlv) bt
0 0x0000000000429fc3 in runtime.gopark
 at /usr/local/go/src/runtime/proc.go:263
1 0x000000000042a043 in runtime.goparkunlock
 at /usr/local/go/src/runtime/proc.go:268
2 0x0000000000442ab6 in time.Sleep
 at /usr/local/go/src/runtime/time.go:59
3 0x00000000004011d6 in main.main.func1
 at ./gocode/src/goroutine.go:16
4 0x0000000000455de0 in runtime.goexit
 at /usr/local/go/src/runtime/asm_amd64.s:1998

The number of main goroutine is 1, whilst func is 5.

Another caveat you should pay attention to is the switch point among goroutines. It can be blocking system call, channel operations, etc.

Reference:Effective Go [https://golang.org/doc/effective_go.html#goroutines];Performance without the event loop [http://dave.cheney.net/2015/08/08/performance-without-the-event-loop];How Goroutines Work [http://blog.nindalf.com/how-goroutines-work/].

How to build Go development environment

Build Go development environment is always easy. Take Linux OS as an example (Because I work as a root user, so if you login as a non-root user, maybe you need sudo to execute some commands), what you should do is just download the binary package which matches your system from here [https://golang.org/dl/], and uncompress it:

wget https://storage.googleapis.com/golang/go1.6.2.linux-amd64.tar.gz
tar -C /usr/local/ -xzf go1.6.2.linux-amd64.tar.gz

Now, there is an extra go directory under /usr/local. It’s done! Too easy, right? Yes, but there are still some windup work to do:

(1) To run Go utilities (go, gofmt, etc) conveniently, you should add /usr/local/go into $PATH environment variable:

cat /etc/profile
......
PATH=$PATH:/usr/local/go/bin
export PATH
......

(2) It is strongly recommended to install Go in /usr/local/go under *nix and c:\Go under Windows since these default directories have already been embedded in Go binary distributions. If you choose another directory, you must set $GOROOT environment variable:

cat /etc/profile
......
GOROOT=/path/to/go
export GOROOT

So the $GOROOT is only need when you install Go on a custom directory, not default.

References:Getting Started [https://golang.org/doc/install];You don’t need to set GOROOT, really [http://dave.cheney.net/2013/06/14/you-dont-need-to-set-goroot-really].

init function

There is a init() function, as the name suggests, it will do some initialization work, such as initializing variables which may not be expressed easily, or calibrating program state. A file can contain one or more init() functions, as shown here:

package main

import "fmt"

var global int = 0

func init() {
	global++
	fmt.Println("In first Init(), global is: ", global)
}

func init() {
	global++
	fmt.Println("In Second Init(), global is: ", global)
}

func main() {
	fmt.Println("In main(), global is: ", global)
}

The execution result is like this:

In first Init(), global is: 1
In Second Init(), global is: 2
In main(), global is: 2

Since one package can contain multiple files, there may be many init() functions. You should not presume which file’s init() functions are executed first. The only thing which is guaranteed is that the variables declared in package will be evaluated before all init() functions are executed in this package.

See another example. The $GOROOT/src directory is like this:

tree
.
├── foo
│ └── foo.go
└── play
 └── main.go

There are 2 simple packages: foo and play. The foo/foo.go is here:

package foo

import "fmt"

var Global int

func init() {
 Global++
 fmt.Println("foo init() is called, Global is: ", Global)
}

While the play/main.go is:

package main

import "foo"

func main() {
}

Build play command:

go install play
play
src/play/main.go:3: imported and not used: "foo"

The cause of this error is that main.go doesn’t use any functions or variables exported by foo package. So if you just want an imported package’s init() function is executed, and don’t want to use package’s other stuff, you should modify “import "foo"” to “import _ "foo"”:

 package main

import _ "foo"

func main() {
}

Now the build process will success, and the output of play command is like this:

play
foo init() is called, Global is: 1

References:Effective Go [https://golang.org/doc/effective_go.html#init];When is the init() function in go (golang) run? [http://stackoverflow.com/questions/24790175/when-is-the-init-function-in-go-golang-run].

Interface

Interface is a reference type which contains some method definitions. Any type which implements all the methods defined by a reference type will satisfy this interface type automatically. Through interface, you can approach object-oriented programming. Check the following example:

package main

import "fmt"

type Foo interface {
	foo()
}

type A struct {
}

func (a A) foo() {
	fmt.Println("A foo")
}

func (a A) bar() {
	fmt.Println("A bar")
}

func callFoo(f Foo) {
	f.foo()
}

func main() {
	var a A
	callFoo(a)
}

The running result is:

A foo

Let’s analyze the code detailedly:

(1)

type Foo interface {
	foo()
}

The above code defines a interface Foo which has only one method: foo().

(2)

type A struct {
}

func (a A) foo() {
	fmt.Println("A foo")
}

func (a A) bar() {
	fmt.Println("A bar")
}

struct A has 2 methods: foo() and bar(). Since it already implements foo() method, it satisfies Foo interface.

(3)

func callFoo(f Foo) {
	f.foo()
}

func main() {
	var a A
	callFoo(a)
}

callFoo requires a variable whose type is Foo interface, and passing A is OK. The callFoo will use A’s foo() method, and “A foo” is printed.

Let’s change the main() function:

func main() {
	var a A
	callFoo(&a)
}

This time, the argument of callFoo() is &a, whose type is *A. Compile and run the program, you may find it also outputs: “A foo”. So *A type has all the methods which A has. But the reverse is not true:

package main

import "fmt"

type Foo interface {
	foo()
}

type A struct {
}

func (a *A) foo() {
	fmt.Println("A foo")
}

func (a *A) bar() {
	fmt.Println("A bar")
}

func callFoo(f Foo) {
	f.foo()
}

func main() {
	var a A
	callFoo(a)
}

Compile the program:

example.go:26: cannot use a (type A) as type Foo in argument to callFoo:
A does not implement Foo (foo method has pointer receiver)

You can see also *A type has implemented foo() and bar() methods, it doesn’t mean A type has both methods by default.

BTW, every type satisfies the empty interface: interface{}.

The interface type is actually a tuple which contains 2 elements: <type, value>, type identifies the type of the variable which stores in the interface while value points to the actual value. The default value of an interface type is nil, which means both type and value are nil: <nil, nil>. When you check whether an interface is empty or not:

var err error
if err != nil {
	...
}

You must remember only if both type and value are nil means the interface value is nil.

Reference:The Go Programming Language [http://www.gopl.io/].

io.Reader interface

io.Reader interface is a basic and very frequently-used interface:

type Reader interface {
 Read(p []byte) (n int, err error)
}

For every type who satisfies the io.Reader interface, you can imagine it’s a pipe. Someone writes contents into one end of the pipe, and you can use Read() method which the type has provided to read content from the other end of the pipe. No matter it is a common file, a network socket, and so on. Only if it is compatible with io.Reader interface, I can read content of it.

Let’s see an example:

package main

import (
	"fmt"
	"io"
	"log"
	"os"
)

func main() {
	file, err := os.Open("test.txt")
	if err != nil {
		log.Fatal(err)
	}
	defer file.Close()

	p := make([]byte, 4)
	for {
		if n, err := file.Read(p); n > 0 {
			fmt.Printf("Read %s\n", p[:n])
		} else if err != nil {
			if err == io.EOF {
				fmt.Println("Read all of the content.")
				break
			} else {
				log.Fatal(err)
			}
		} else /* n == 0 && err == nil */ {
			/* do nothing */
		}
	}
}

You can see after issuing a read() call, there are 3 scenarios need to be considered:

(1) n > 0: read valid contents; process it;(2) n == 0 && err != nil: if err is io.EOF, it means all the content have been read, and there is nothing left; else something unexpected happened, need to do special operations;(3) n == 0 && err == nil: according to io package document [https://golang.org/pkg/io/#Reader], it means nothing happened, so no need to do anything.

Create a test.txt file which only contains 5 bytes:

cat test.txt
abcde

Executing the program, and the result is like this:

Read abcd
Read e
Read all of the content.

Reference:io package document [https://golang.org/pkg/io/#Reader].

io.Writer interface

The inverse of io.Reader [https://golang.org/pkg/io/#Reader] is io.Writer [https://golang.org/pkg/io/#Writer] interface:

type Writer interface {
 Write(p []byte) (n int, err error)
}

Compared to io.Reader, since you no need to consider io.EOF error, the process of Write method is simple:

(1) err == nil: All the data in p is written successfully;(2) err != nil: The data in p is partially or not written at all.

Let’s see an example:

package main

import (
 "log"
 "os"
)

func main() {
 f, err := os.Create("test.txt")
 if err != nil {
 log.Fatal(err)
 }
 defer f.Close()

 if _, err = f.Write([]byte{'H', 'E', 'L', 'L', 'O'}); err != nil {
 log.Fatal(err)
 }
}

After executing the program, the test.txt is created:

cat test.txt
HELLO

Need not close every channel

You don’t need to close channel after using it, and it can be recycled automatically by the garbage collector. The following quote is from The Go Programming Language [http://www.gopl.io/]:

You needn’t close every channel when you’ve finished with it. It’s only necessary to close a channel when it is important to tell the receiving goroutines that all data have been sent. A channel that the garbage collector determines to be unreachable will have its resources reclaimed whether or not it is closed. (Don’t confuse this with the close operation for open files. It is important to call the Close method on every file when you’ve finished with it.)

References:Is it OK to leave a channel open? [http://stackoverflow.com/questions/8593645/is-it-ok-to-leave-a-channel-open];The Go Programming Language [http://www.gopl.io/].

nil channel VS closed channel

The zero value of channel type is nil, and the send and receive operations on a nil channel will always block. Check the following example:

package main

import "fmt"

func main() {
 var ch chan int

 go func(c chan int) {
 for v := range c {
 fmt.Println(v)
 }
 }(ch)

 ch <- 1
}

The running result is like this:

fatal error: all goroutines are asleep - deadlock!

goroutine 1 [chan send (nil chan)]:
main.main()
 /root/nil_channel.go:14 +0x64

goroutine 5 [chan receive (nil chan)]:
main.main.func1(0x0)
 /root/nil_channel.go:9 +0x53
created by main.main
 /root/nil_channel.go:12 +0x37

We can see the main and func goroutines are both blocked.

The Go’s built-in close function can be used to close the channel which must not be receive-only, and it should always be executed by sender, not receiver. Closing a nil channel will cause panic. See the following example:

package main

func main() {
 var ch chan int
 close(ch)
}

The running result is like this:

panic: close of nil channel

goroutine 1 [running]:
panic(0x456500, 0xc82000a170)
 /usr/local/go/src/runtime/panic.go:481 +0x3e6
main.main()
 /root/nil_channel.go:5 +0x1e

Furthermore, there are also some subtleties of operating an already-closed channel:

(1) Close an already channel also cause panic:

package main

func main() {
 ch := make(chan int)
 close(ch)
 close(ch)
}

The running result is like this:

panic: close of closed channel

goroutine 1 [running]:
panic(0x456500, 0xc82000a170)
 /usr/local/go/src/runtime/panic.go:481 +0x3e6
main.main()
 /root/nil_channel.go:6 +0x4d

(2) Send on a closed channel will also introduce panic:

package main

func main() {
 ch := make(chan int)
 close(ch)
 ch <- 1
}

The running result is like this:

panic: send on closed channel

goroutine 1 [running]:
panic(0x456500, 0xc82000a170)
 /usr/local/go/src/runtime/panic.go:481 +0x3e6
main.main()
 /root/nil_channel.go:6 +0x6c

(3) Receive on a closed channel will return the zero value for the channel’s type without blocking:

package main

import "fmt"

func main() {
 ch := make(chan int)
 close(ch)
 fmt.Println(<-ch)
}

The executing result is like this:

0

The following is a summary of “nil channel VS closed channel”:

 	Operation type
	 	Nil channel
	 	Closed channel

 	Send
	 	Block
	 	Panic

 	Receive
	 	Block
	 	Not block, return zero value of channel's type

	
 	Close
	 	Panic
	 	Panic

References:Package builtin [https://golang.org/pkg/builtin/#close];Is it OK to leave a channel open? [http://stackoverflow.com/questions/8593645/is-it-ok-to-leave-a-channel-open];The Go Programming Language Specification [https://golang.org/ref/spec].

“nil slice” vs “nil map”

Slice and map are all reference types in Go, and their default values are nil:

package main

import "fmt"

func main() {
	var (
		s []int
		m map[int]bool
)
	if s == nil {
		fmt.Println("The value of s is nil")
	}
	if m == nil {
		fmt.Println("The value of m is nil")
	}
}

The result is like this：

The value of s is nil
The value of m is nil

When a slice’s value is nil, you could also do operations on it, such as append:

package main

import "fmt"

func main() {
	var s []int
	fmt.Println("Is s a nil? ", s == nil)
	s = append(s, 1)
	fmt.Println("Is s a nil? ", s == nil)
	fmt.Println(s)
}

The result is like this：

Is s a nil? true
Is s a nil? false
[1]

A caveat you should notice is the length of both nil and empty slice is 0:

package main

import "fmt"

func main() {
	var s1 []int
	s2 := []int{}
	fmt.Println("Is s1 a nil? ", s1 == nil)
	fmt.Println("Length of s1 is: ", len(s1))
	fmt.Println("Is s2 a nil? ", s2 == nil)
	fmt.Println("Length of s2 is: ", len(s2))
}

The result is like this：

Is s1 a nil? true
Length of s1 is: 0
Is s2 a nil? false
Length of s2 is: 0

So you should compare the slice’s value with nil to check whether it is a nil.

Accessing a nil map is OK, but storing a nil map cause program panic:

package main

import "fmt"

func main() {
	var m map[int]bool
	fmt.Println("Is m a nil? ", m == nil)
	fmt.Println("m[1] is ", m[1])
	m[1] = true
}

The result is like this:

Is m a nil? true
m[1] is false
panic: assignment to entry in nil map

goroutine 1 [running]:
panic(0x4cc0e0, 0xc082034210)
	C:/Go/src/runtime/panic.go:481 +0x3f4
main.main()
	C:/Work/gocode/src/Hello.go:9 +0x2ee
exit status 2

Process finished with exit code 1

So the best practice is to initialize a map before using it, like this:

m := make(map[int]bool)

BTW, you should use the following pattern to check whether there is an element in map or not:

if v, ok := m[1]; !ok {

}

Reference:The Go Programming Language [http://www.gopl.io/].

Package

In Go, the packages can be divided into 2 categories:

(1) main package: is used to generate the executable binary, and the main function is the entry point of the program. Take hello.go as an example:

package main

import "greet"

func main() {
	greet.Greet()
}

(2) This category can also include 2 types:

a) Library package: is used to generate the object files that can be reused by others. Take greet.go as an example:

package greet

import "fmt"

func Greet() {
	fmt.Println("Hello 中国!")
}

b) Some other packages for special purposes, such as testing.

Nearly every program needs Go standard ($GOROOT) or third-pary ($GOPATH) packages. To use them, you should use import statement:

import "fmt"
import "github.com/NanXiao/stack"

Or:

import (
	"fmt"
	"github.com/NanXiao/stack"
)

In the above examples, the “fmt” and “github.com/NanXiao/stack” are called import path, which is used to find the relevant package.

You may also see the following cases:

import m "lib/math" // use m as the math package name
import . "lib/math" // Omit package name when using math package

If the go install command can’t find the specified package, it will complain the error messages like this:

... : cannot find package "xxxx" in any of:
 /usr/local/go/src/xxxx (from $GOROOT)
 /root/gowork/src/xxxx (from $GOPATH)

To avoid library conflicts, you’d better make your own packages’ path the only one in the world: E.g., your github repository destination:

 github.com/NanXiao/...

Conventionally, your package name should be same with the last item in import path; it is a good coding habit though not a must.

Reference:The Go Programming Language [http://www.gopl.io/].

Pass slice as a function argument

In Go, the function parameters are passed by value. With respect to use slice as a function argument, that means the function will get the copies of the slice: a pointer which points to the starting address of the underlying array, accompanied by the length and capacity of the slice. Oh boy! Since you know the address of the memory which is used to store the data, you can tweak the slice now. Let’s see the following example:

package main

import (
	"fmt"
)

func modifyValue(s []int) {
	s[1] = 3
	fmt.Printf("In modifyValue: s is %v\n", s)
}
func main() {
	s := []int{1, 2}
	fmt.Printf("In main, before modifyValue: s is %v\n", s)
	modifyValue(s)
	fmt.Printf("In main, after modifyValue: s is %v\n", s)
}

The result is here:

In main, before modifyValue: s is [1 2]
In modifyValue: s is [1 3]
In main, after modifyValue: s is [1 3]

You can see, after running modifyValue function, the content of slice s is changed. Although the modifyValue function just gets a copy of the memory address of slice’s underlying array, it is enough!

See another example:

package main

import (
	"fmt"
)

func addValue(s []int) {
	s = append(s, 3)
	fmt.Printf("In addValue: s is %v\n", s)
}

func main() {
	s := []int{1, 2}
	fmt.Printf("In main, before addValue: s is %v\n", s)
	addValue(s)
	fmt.Printf("In main, after addValue: s is %v\n", s)
}

The result is like this:

In main, before addValue: s is [1 2]
In addValue: s is [1 2 3]
In main, after addValue: s is [1 2]

This time, the addValue function doesn’t take effect on the s slice in main function. That’s because it just manipulate the copy of the s, not the “real” s.

So if you really want the function to change the content of a slice, you can pass the address of the slice:

package main

import (
	"fmt"
)

func addValue(s *[]int) {
	*s = append(*s, 3)
	fmt.Printf("In addValue: s is %v\n", s)
}

func main() {
	s := []int{1, 2}
	fmt.Printf("In main, before addValue: s is %v\n", s)
	addValue(&s)
	fmt.Printf("In main, after addValue: s is %v\n", s)
}	

The result is like this:

In main, before addValue: s is [1 2]
In addValue: s is &[1 2 3]
In main, after addValue: s is [1 2 3]

Prepend

Go has a built-in append [https://golang.org/pkg/builtin/#append] function which add elements in the slice:

func append(slice []Type, elems ...Type) []Type

But how if we want to the “prepend” effect? Maybe we should use copy function. E.g.:

package main

import "fmt"

func main() {
	var s []int = []int{1, 2}
	fmt.Println(s)

	s1 := make([]int, len(s) + 1)
	s1[0] = 0
	copy(s1[1:], s)
	s = s1
	fmt.Println(s)

}

The result is like this:

[1 2]
[0 1 2]

But the above code looks ugly and cumbersome, so an elegant implementation maybe here:

s = append([]int{0}, s...)

BTW, I also have tried to write a “general-purpose” prepend:

func Prepend(v interface{}, slice []interface{}) []interface{}{
	return append([]interface{}{v}, slice...)
}

But since []T can’t convert to an []interface{} directly (please refer https://golang.org/doc/faq#convert_slice_of_interface, it is just a toy, not useful.

Reference:Go – append/prepend item into slice [https://codingair.wordpress.com/2014/07/18/go-appendprepend-item-into-slice/].

Processing JSON object

JSON [http://www.json.org/] is a commonly used and powerful data-interchange format, and Go provides a built-in json [https://golang.org/pkg/encoding/json/] package to handle it. Let’ see the following example:

package main

import (
	"encoding/json"
	"log"
	"fmt"
)

type People struct {
	Name string
	age int
	Career string `json:"career"`
	Married bool `json:",omitempty"`
}

func main() {
	p := &People{
		Name: "Nan",
		age: 34,
		Career: "Engineer",
	}

	data, err := json.Marshal(p)
	if err != nil {
		log.Fatalf("JSON marshaling failed: %s", err)
	}
	fmt.Printf("%s\n", data)
}

And the execution result is shown as follows:

{"Name":"Nan","career":"Engineer"}

The Marshal [https://golang.org/pkg/encoding/json/#Marshal] function is used to serialize an interface into a JSON object. In our example, it encodes a People struct:

(1) The Name member is encoded as our expectation:

"Name":"Nan"

(2) Where is the age field? We can’t find it in our result. The cause is only exported members of struct can be marshaled, so that means only the name whose first letter capitalized can be encoded into JSON object (In our example, you should use Age instead of age).

(3) The name of Career field is career, not Career:

"career":"Engineer"

That’s because the following tag: json:"career", which tells the Marshal function to use career in the JSON object.

(4) We also can’t see Married in the result although it has been exported, the magic behind is the json:",omitempty" tag which tells Marshal function no need to encode this member if it uses the default value.

There is another Unmarshal [https://golang.org/pkg/encoding/json/#Unmarshal] function which is used to parse a JSON object. See the following example which extends from the above one:

package main

import (
	"encoding/json"
	"log"
	"fmt"
)

type People struct {
	Name string
	age int
	Career string `json:"career"`
	Married bool `json:",omitempty"`
}

func main() {
	var p People
	data, err := json.Marshal(&People{Name: "Nan", age: 34, Career: "Engineer", Married: true})

	if err != nil {
		log.Fatalf("JSON marshaling failed: %s", err)
	}

	err = json.Unmarshal(data, &p)
	if err != nil {
		log.Fatalf("JSON unmarshaling failed: %s", err)
	}

	fmt.Println(p)
}

The running result is like this:

{Nan 0 Engineer true}

We can see the JSON object is decoded successfully.

Besides Marshal and Unmarshal functions, the json package also provides Encoder [https://golang.org/pkg/encoding/json/#Encoder] and Decoder [https://golang.org/pkg/encoding/json/#Decoder] structs which are used to process JSON object from stream. E.g., It is not uncommon to see code which handle HTTP likes this:

func postFunc(w http.ResponseWriter, r *http.Request) {

	if err := json.NewDecoder(r.Body).Decode(&request); err != nil {
		http.Error(w, err.Error(), http.StatusBadRequest)
		return
	}

}

Because the mechanism of both methods are similar, it is not necessary to overtalk Encoder and Decoder here.

References:Package json [https://golang.org/pkg/encoding/json/];The Go Programming Language [http://www.gopl.io/].

range

for ... range clause can be used to iterate 5 types of variables: array, slice, string, map and channel, and the following sheet gives a summary of the items of for ... range loops:

 	Type
	 	1st item
	 	2nd item

 	Array
	 	index
	 	value

 	Slice
	 	index
	 	value

	
 	String
	 	index (rune)
	 	value (rune)

	
 	Map
	 	key
	 	value

	
 	Channel
	 	value
	 	

For array, slice, string and map, if you don’t care about the second item, you can omit it. E.g.:

package main

import "fmt"

func main() {
	m := map[string]struct{} {
		"alpha": struct{}{},
		"beta": struct{}{},
	}
	for k := range m {
		fmt.Println(k)
	}
}

The running result is like this:

alpha
beta

Likewise, if the program doesn’t need the first item, a blank identifier should occupy the position:

package main

import "fmt"

func main() {
	for _, v := range []int{1, 2, 3} {
		fmt.Println(v)
	}
}

The output is:

1
2
3

For channel type, the close operation can cause for ... range loop exit. See the following code:

package main

import "fmt"

func main() {
	ch := make(chan int)
	go func(chan int) {
		for _, v := range []int{1, 2} {
			ch <- v
		}
		close(ch)
	}(ch)

	for v := range ch {
		fmt.Println(v)
	}
	fmt.Println("The channel is closed.")
}

Check the outcome:

1
2
The channel is closed.

We can see close(ch) statement in another goroutine make the loop in main goroutine end.

Reallocating underlying array of slice

When appending data into slice, if the underlying array of the slice doesn’t have enough space, a new array will be allocated. Then the elements in old array will be copied into this new memory, accompanied with adding new data behind. So when using Go built-in append function, you must always keep the idea that “the array may have been changed” in mind, and be very careful about it, otherwise, it may bite you!

Let me explain it through a contrived example:

package main

import (
	"fmt"
)

func addTail(s []int) {
	var ns [][]int
	for _, v := range []int{1, 2} {
		ns = append(ns, append(s, v))
	}
	fmt.Println(ns)
}

func main() {
	s1 := []int{0, 0}
	s2 := append(s1, 0)

	for _, v := range [][]int{s1, s2} {
		addTail(v)
	}
}

The s1 is [0, 0], and the s2 is [0, 0, 0]; in addTail function, I want to add 1 and 2 behind the slice. So the wanted output is like this:

[[0 0 1] [0 0 2]]
[[0 0 0 1] [0 0 0 2]]

But the actual result is:

[[0 0 1] [0 0 2]]
[[0 0 0 2] [0 0 0 2]]

The operations on s1 are successful, while s2 not.

Let’s use delve to debug this issue and check the internal mechanism of slice: Add breakpoint on addTail function, and it is first hit when processing s1:

(dlv) n
> main.addTail() ./slice.go:8 (PC: 0x401022)
 3: import (
 4: "fmt"
 5:)
 6:
 7: func addTail(s []int) {
=> 8: var ns [][]int
 9: for _, v := range []int{1, 2} {
 10: ns = append(ns, append(s, v))
 11: }
 12: fmt.Println(ns)
 13: }
(dlv) p s
[]int len: 2, cap: 2, [0,0]
(dlv) p &s[0]
(*int)(0xc82000a2a0)

The length and capacity of s1 are both 2, and the underlying array address is 0xc82000a2a0, so what happened when executing the following statement:

ns = append(ns, append(s, v))

Since the length and capacity of s1 are both 2, there is no room for new buddy. To append a new value, a new array must be allocated, and it contains both [0, 0] from s1 and the new value(1 or 2). You can consider append(s, v) generated an anonymous new slice, and it is appended in ns. We can check it after running “ns = append(ns, append(s, v))”:

(dlv) n
> main.addTail() ./slice.go:9 (PC: 0x401217)
 4: "fmt"
 5:)
 6:
 7: func addTail(s []int) {
 8: var ns [][]int
=> 9: for _, v := range []int{1, 2} {
 10: ns = append(ns, append(s, v))
 11: }
 12: fmt.Println(ns)
 13: }
 14:
(dlv) p ns
[][]int len: 1, cap: 1, [
 [0,0,1],
]
(dlv) p ns[0]
[]int len: 3, cap: 4, [0,0,1]
(dlv) p &ns[0][0]
(*int)(0xc82000e240)
(dlv) p s
[]int len: 2, cap: 2, [0,0]
(dlv) p &s[0]
(*int)(0xc82000a2a0)

We can see the length of anonymous slice is 3, capacity is 4, and the underlying array address is 0xc82000e240, different from s1’s (0xc82000a2a0). Continue executing until exit loop:

(dlv) n
> main.addTail() ./slice.go:12 (PC: 0x40124c)
 7: func addTail(s []int) {
 8: var ns [][]int
 9: for _, v := range []int{1, 2} {
 10: ns = append(ns, append(s, v))
 11: }
=> 12: fmt.Println(ns)
 13: }
 14:
 15: func main() {
 16: s1 := []int{0, 0}
 17: s2 := append(s1, 0)
(dlv) p ns
[][]int len: 2, cap: 2, [
 [0,0,1],
 [0,0,2],
]
(dlv) p &ns[0][0]
(*int)(0xc82000e240)
(dlv) p &ns[1][0]
(*int)(0xc82000e280)
(dlv) p &s[0]
(*int)(0xc82000a2a0)

We can see s1, ns[0] and ns[1] have 3 independent array.

Now, let’s follow the same steps to check what happened on s2:

(dlv) n
> main.addTail() ./slice.go:8 (PC: 0x401022)
 3: import (
 4: "fmt"
 5:)
 6:
 7: func addTail(s []int) {
=> 8: var ns [][]int
 9: for _, v := range []int{1, 2} {
 10: ns = append(ns, append(s, v))
 11: }
 12: fmt.Println(ns)
 13: }
(dlv) p s
[]int len: 3, cap: 4, [0,0,0]
(dlv) p &s[0]
(*int)(0xc82000e220)

The length of s2 is 3, and capacity is 4, so there is one slot for adding new element. Check the s2 and ns’ values after executing “ns = append(ns, append(s, v))” the first time:

(dlv)
> main.addTail() ./slice.go:9 (PC: 0x401217)
 4: "fmt"
 5:)
 6:
 7: func addTail(s []int) {
 8: var ns [][]int
=> 9: for _, v := range []int{1, 2} {
 10: ns = append(ns, append(s, v))
 11: }
 12: fmt.Println(ns)
 13: }
 14:
(dlv) p ns
[][]int len: 1, cap: 1, [
 [0,0,0,1],
]
(dlv) p &ns[0][0]
(*int)(0xc82000e220)
(dlv) p s
[]int len: 3, cap: 4, [0,0,0]
(dlv) p &s[0]
(*int)(0xc82000e220)

We can see the new anonymous slice’s array address is also 0xc82000e220, that’s because the s2 has enough space to hold new value, no new array is allocated. Check the s2 and ns again after adding 2:

(dlv)
> main.addTail() ./slice.go:12 (PC: 0x40124c)
 7: func addTail(s []int) {
 8: var ns [][]int
 9: for _, v := range []int{1, 2} {
 10: ns = append(ns, append(s, v))
 11: }
=> 12: fmt.Println(ns)
 13: }
 14:
 15: func main() {
 16: s1 := []int{0, 0}
 17: s2 := append(s1, 0)
(dlv) p ns
[][]int len: 2, cap: 2, [
 [0,0,0,2],
 [0,0,0,2],
]
(dlv) p &ns[0][0]
(*int)(0xc82000e220)
(dlv) p &ns[1][0]
(*int)(0xc82000e220)
(dlv) p s
[]int len: 3, cap: 4, [0,0,0]
(dlv) p &s[0]
(*int)(0xc82000e220)

All 3 slices point to the same array, so the later value(2) will override previous item(1).

So in a conclusion, append is very tricky since it can modify the underlying array without noticing you. You must know the memory layout behind every slice clearly, else the slice can give you a big, unwanted surprise!

Select operation

Go’s select operation looks similar to switch, but it’s dedicated to poll send and receive operations channels. Check the following example:

package main

import (
 "fmt"
 "time"
)

func main() {
 ch1 := make(chan int)
 ch2 := make(chan int)

 go func(ch chan int) { <-ch }(ch1)
 go func(ch chan int) { ch <- 2 }(ch2)

 time.Sleep(time.Second)

 for {
 select {
 case ch1 <- 1:
 fmt.Println("Send operation on ch1 works!")
 case <-ch2:
 fmt.Println("Receive operation on ch2 works!")
 default:
 fmt.Println("Exit now!")
 return
 }
 }
}

The running result is like this:

Send operation on ch1 works!
Receive operation on ch2 works!
Exit now!

The select operation will check which case branch can be run, that means the send or receive action can be executed successfully. If more than one case are ready now, the select will randomly choose one to execute. If no case is ready, but there is a default branch, then the default block will be executed, else the select operation will block. In the above example, if the main goroutine doesn’t sleep (time.Sleep(time.Second)), the other 2 func goroutines won’t obtain the opportunity to run, so only default block in select statement will be executed.

The select statement won’t process nil channel, so if a channel used for receive operation is closed, you should mark its value as nil, then it will be kicked out of the selection list. So a common pattern of selection on multiple receive channels looks like this:

for ch1 != nil && ch2 != nil {
 select {
 case x, ok := <-ch1:
 if !ok {
 ch1 = nil
			break
 }
	
 case x, ok := <-ch2:
 if !ok {
 ch2 = nil
			break
 }
	
 }
}

References:The Go Programming Language Specification [https://golang.org/ref/spec];breaking out of a select statement when all channels are closed [http://stackoverflow.com/questions/13666253/breaking-out-of-a-select-statement-when-all-channels-are-closed];Curious Channels [http://dave.cheney.net/2013/04/30/curious-channels].

Send and receive operations on channel

Go’s built-in channel type provides a handy method for communicating and synchronizing: The producer pushes data into channel and the consumer pulls data from it.

The send operation on channel is simple, as long as the filled-in stuff is a valid expression and matches the channel’s type:

Channel <- Expression

Take the following code as an example:

package main

func send() int {
	return 2
}
func main() {
	ch := make(chan int, 2)
	ch <- 1
	ch <- send()
}

Receive operation on channel pulls the value from the channel, and you can save it or discard it if you don’t care what you have got. Check the following example:

package main

import "fmt"

func main() {
	ch := make(chan int)
	go func(ch chan int) {
		ch <- 1
		ch <- 2
	}(ch)
	<-ch
	fmt.Println(<-ch)
}

The running result is 2, and that’s because the first value (1) is left out in <-ch statement.

Compared to its send sibling, the receive operation is a little tricky: in assignment and initialization, there will be another return value which indicates whether this communication is successful or not. And the idiom of this variable’s name is ok:

v, ok := <- ch

The value of ok is true if the value received was delivered by a successful send operation to the channel, or false if it is a zero value generated because the channel is closed and empty. That means although the channel is closed, as long as there is still data in the channel, the receive operation can of course get things from it. See the following code:

package main

import "fmt"

func main() {
	ch := make(chan int)

	go func(ch chan int) {
		ch <- 1
		ch <- 2
		close(ch)
	}(ch)

	for i := 1; i <= 3; i++ {
		v, ok := <- ch
		fmt.Printf("value is %d, ok is %v\n", v, ok)
	}
}

The executing result is like this:

value is 1, ok is true
value is 2, ok is true
value is 0, ok is false

We can see after func goroutine executes closing channel operation, the value of v got from channel is the zero value of integer type: 0, and ok is false.

Reference:The Go Programming Language Specification [https://golang.org/ref/spec].

Short variable declaration

Short variable declaration is a very convenient manner of “declaring variable” in Go:

i := 10

It is shorthand of following (Please notice there is no type):

var i = 10

The Go compiler will infer the type according to the value of variable. It is a very handy feature, but on the other side of coin, it also brings some pitfalls which you should pay attention to:

(1) This format can only be used in functions:

package main

i := 10

func main() {
	fmt.Println(i)
}

The compiler will complain the following words:

syntax error: non-declaration statement outside function body

(2) You must declare at least 1 new variable:

package main

import "fmt"

func main() {
 var i = 1

 i, err := 2, true

 fmt.Println(i, err)
}

In i, err := 2, false statement, only err is a new declared variable, var is actually declared in var i = 1.

(3) The short variable declaration can shadow the global variable declaration, and it may not be what you want, and gives you a big surprise:

package main

import "fmt"

var i = 1

func main() {

 i, err := 2, true

 fmt.Println(i, err)
}

i, err := 2, true actually declares a new local i which makes the global i inaccessible in main function. To use the global variable but not introducing a new local one, one solution maybe like this:

package main

import "fmt"

var i int

func main() {

 var err bool

 i, err = 2, true

 fmt.Println(i, err)
}

Reference：Short variable declarations [https://golang.org/ref/spec#Short_variable_declarations].

Sort

sort package defines an interface [https://golang.org/pkg/sort/#Interface] whose name is Interface:

type Interface interface {
 // Len is the number of elements in the collection.
 Len() int
 // Less reports whether the element with
 // index i should sort before the element with index j.
 Less(i, j int) bool
 // Swap swaps the elements with indexes i and j.
 Swap(i, j int)
}

For slice, or any other collection types, provided that it implements the Len(), Less and Swap functions, you can use sort.Sort() function to arrange the elements in the order.

Let’s see the following example:

package main

import (
	"fmt"
	"sort"
)

type command struct {
	name string
}

type byName []command

func (a byName) Len() int { return len(a) }
func (a byName) Swap(i, j int) { a[i], a[j] = a[j], a[i] }
func (a byName) Less(i, j int) bool { return a[i].name < a[j].name }

func main() {
	c := []command{
		{"breakpoint"},
		{"help"},
		{"args"},
		{"continue"},
	}
	fmt.Println("Before sorting: ", c)
	sort.Sort(byName(c))
	fmt.Println("After sorting: ", c)
}

To avoid losing focus of demonstrating how to use sort.Interface, the command struct is simplified to only contain one string member: name. The comparison method (Less) is just contrasting the name in alphabetic order.

Check the running result of the program:

Before sorting: [{breakpoint} {help} {args} {continue}]
After sorting: [{args} {breakpoint} {continue} {help}]

We can see after sorting, the items in c are rearranged.

Additionally, if you pick at the performance, you may define a slice whose type is the pointer, because switching pointer is much quicker if the size of element is very big. Modify the above example:

package main

import (
	"fmt"
	"sort"
)

type command struct {
	name string
	help string
}

type byName []*command

func (a byName) Len() int { return len(a) }
func (a byName) Swap(i, j int) { a[i], a[j] = a[j], a[i] }
func (a byName) Less(i, j int) bool { return a[i].name < a[j].name }

func main() {
	c := []*command{
		{"breakpoint", "Set breakpoints"},
		{"help", "Show help"},
		{"args", "Print arguments"},
		{"continue", "Continue"},
	}
	fmt.Println("Before sorting: ", c)
	sort.Sort(byName(c))
	fmt.Println("After sorting: ", c)
}

Check the executing result:

Before sorting: [0xc0820066a0 0xc0820066c0 0xc0820066e0 0xc082006700]
After sorting: [0xc0820066e0 0xc0820066a0 0xc082006700 0xc0820066c0]

You can see the pointers are reordered.

Reference:The Go Programming Language [http://www.gopl.io/].

String

In Go, string is an immutable array of bytes. So if created, we can’t change its value. E.g.:

package main

func main() {
	s := "Hello"
	s[0] = 'h'
}

The compiler will complain:

cannot assign to s[0]

To modify the content of a string, you could convert it to a byte array. But in fact, you do not operate on the original string, just a copy:

package main

import "fmt"

func main() {
	s := "Hello"
	b := []byte(s)
	b[0] = 'h'
	fmt.Printf("%s\n", b)
}

The result is like this:

hello

Since Go uses UTF-8 encoding, you must remember the len function will return the string’s byte number, not character number:

package main

import "fmt"

func main() {
	s := "日志log"
	fmt.Println(len(s))
}

The result is:

9

Because each Chinese character occupied 3 bytes, s in the above example contains 5 characters and 9 bytes.

If you want to access every character, for ... range loop can give a help:

package main
import "fmt"

func main() {
	s := "日志log"
	for index, runeValue := range s {
		fmt.Printf("%#U starts at byte position %d\n", runeValue, index)
	}
}

The result is:

U+65E5 '日' starts at byte position 0
U+5FD7 '志' starts at byte position 3
U+006C 'l' starts at byte position 6
U+006F 'o' starts at byte position 7
U+0067 'g' starts at byte position 8

Reference:Strings, bytes, runes and characters in Go [https://blog.golang.org/strings];The Go Programming Language [http://www.gopl.io/].

switch

Compared to other programming languages (such as C), Go’s switch-case statement doesn’t need explicit “break”, and not have fall-though characteristic. Take the following code as an example:

package main

import (
	"fmt"
)

func checkSwitch(val int) {
	switch val {
	case 0:
	case 1:
		fmt.Println("The value is: ", val)
	}
}
func main() {
	checkSwitch(0)
	checkSwitch(1)
}

The output is:

The value is: 1

Your real intention is the “fmt.Println("The value is: ", val)” will be executed when val is 0 or 1, but in fact, the statement only takes effect when val is 1. To fulfill your request, there are 2 methods:

(1) Use fallthrough:

func checkSwitch(val int) {
	switch val {
	case 0:
		fallthrough
	case 1:
		fmt.Println("The value is: ", val)
	}
}

(2) Put 0 and 1 in the same case:

func checkSwitch(val int) {
	switch val {
	case 0, 1:
		fmt.Println("The value is: ", val)
	}
}

switch can also be used as a better if-else, and you may find it may be more clearer and simpler than multiple if-else statements.E.g.:

package main

import (
	"fmt"
)

func checkSwitch(val int) {
	switch {
	case val < 0:
		fmt.Println("The value is less than zero.")
	case val == 0:
		fmt.Println("The value is qual to zero.")
	case val > 0:
		fmt.Println("The value is more than zero.")
	}
}
func main() {
	checkSwitch(-1)
	checkSwitch(0)
	checkSwitch(1)
}

The output is:

The value is less than zero.
The value is qual to zero.
The value is more than zero.

The internals of slice

There are 3 components of slice:a) Pointer: Points to the start position of slice in the underlying array;b) length (type is int): the number of the valid elements of the slice;b) capacity (type is int): the total number of slots of the slice.

Check the following code:

package main

import (
	"fmt"
	"unsafe"
)

func main() {
	var s1 []int
	fmt.Println(unsafe.Sizeof(s1))
}

The result is 24 on my 64-bit system (The pointer and int both occupy 8 bytes).

In the next example, I will use gdb to poke the internals of slice. The code is like this:

package main

import "fmt"

func main() {
 s1 := make([]int, 3, 5)
 copy(s1, []int{1, 2, 3})
 fmt.Println(len(s1), cap(s1), &s1[0])

 s1 = append(s1, 4)
 fmt.Println(len(s1), cap(s1), &s1[0])

 s2 := s1[1:]
 fmt.Println(len(s2), cap(s2), &s2[0])
}

Use gdb to step into the code:

5 func main() {
(gdb) n
6 s1 := make([]int, 3, 5)
(gdb)
7 copy(s1, []int{1, 2, 3})
(gdb)
8 fmt.Println(len(s1), cap(s1), &s1[0])
(gdb)
3 5 0xc820010240

Before executing “s1 = append(s1, 4)”, fmt.Println outputs the length(3), capacity(5) and the starting element address(0xc820010240) of the slice, let’s check the memory layout of s1:

10 s1 = append(s1, 4)
(gdb) p &s1
$1 = (struct []int *) 0xc82003fe40
(gdb) x/24xb 0xc82003fe40
0xc82003fe40: 0x40 0x02 0x01 0x20 0xc8 0x00 0x00 0x00
0xc82003fe48: 0x03 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0xc82003fe50: 0x05 0x00 0x00 0x00 0x00 0x00 0x00 0x00
(gdb)

Through examining the memory content of s1(the start memory address is 0xc82003fe40), we can see its content matches the output of fmt.Println.

Continue executing, and check the result before “s2 := s1[1:]”:

(gdb) n
11 fmt.Println(len(s1), cap(s1), &s1[0])
(gdb)
4 5 0xc820010240
13 s2 := s1[1:]
(gdb) x/24xb 0xc82003fe40
0xc82003fe40: 0x40 0x02 0x01 0x20 0xc8 0x00 0x00 0x00
0xc82003fe48: 0x04 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0xc82003fe50: 0x05 0x00 0x00 0x00 0x00 0x00 0x00 0x00

We can see after appending a new element(s1 = append(s1, 4)), the length of s1 is changed to 4, but the capacity remains the original value.

Let’s check the internals of s2:

(gdb) n
14 fmt.Println(len(s2), cap(s2), &s2[0])
(gdb)
3 4 0xc820010248
15 }
(gdb) p &s2
$3 = (struct []int *) 0xc82003fe28
(gdb) x/24hb 0xc82003fe28
0xc82003fe28: 0x48 0x02 0x01 0x20 0xc8 0x00 0x00 0x00
0xc82003fe30: 0x03 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0xc82003fe38: 0x04 0x00 0x00 0x00 0x00 0x00 0x00 0x00

The element start address of s2 is 0xc820010248, actually the second element of s1(0xc82003fe40), and the length(3) and capacity(4) are both one less than the counterparts of s1(4 and 5 respectively).

Two-dimensional slice

Go supports multiple-dimensional slice, but I only want to introduce two-dimensional slice here. One reason is the two-dimensional slice is usually used in daily life, while multiple-dimensional seems not common. If you often use multiple-dimensional slice, personally I think the code is a little clumsy and not easy to maintain, so maybe you can try to check whether there is a better method; the other reason is the principle behind multiple-dimensional slice is the same with two-dimensional slice, you can also understand it if you know two-dimensional slice well.

Let’s the following example:

package main

import "fmt"

func main() {
	s := make([][]int, 2)
	fmt.Println(len(s), cap(s), &s[0])

	s[0] = []int{1, 2, 3}
	fmt.Println(len(s[0]), cap(s[0]), &s[0][0])

	s[1] = make([]int, 3, 5)
	fmt.Println(len(s[1]), cap(s[1]), &s[1][0])
}

I still use gdb to inspect the execution flow:

5 func main() {
(gdb) n
6 s := make([][]int, 2)
(gdb)
7 fmt.Println(len(s), cap(s), &s[0])
(gdb)
2 2 &[]
9 s[0] = []int{1, 2, 3}
(gdb) p &s
$1 = (struct [][]int *) 0xc82003fe70
(gdb) x/24xb 0xc82003fe70
0xc82003fe70: 0x40 0x02 0x01 0x20 0xc8 0x00 0x00 0x00
0xc82003fe78: 0x02 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0xc82003fe80: 0x02 0x00 0x00 0x00 0x00 0x00 0x00 0x00

s is a slice (the start memory address is 0xc82003fe70), but its elements are also slices. Let’s check the elements:

(gdb) x/48xb 0xc820010240
0xc820010240: 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0xc820010248: 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0xc820010250: 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0xc820010258: 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0xc820010260: 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0xc820010268: 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00

All the memory content are 0, nothing exciting! Continue to step by step:

(gdb) n
10 fmt.Println(len(s[0]), cap(s[0]), &s[0][0])
(gdb)
3 3 0xc82000e220
12 s[1] = make([]int, 3, 5)

Now since s contains a valid slice element, check its underlying array:

(gdb) x/48xb 0xc820010240
0xc820010240: 0x20 0xe2 0x00 0x20 0xc8 0x00 0x00 0x00
0xc820010248: 0x03 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0xc820010250: 0x03 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0xc820010258: 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0xc820010260: 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0xc820010268: 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00

Yeah, the memory has been updated by the pointer, length and capacity of s[0], the same with previous output from fmt.Println. Check the underlying array of s[0]:

(gdb) x/24xb 0xc82000e220
0xc82000e220: 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0xc82000e228: 0x02 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0xc82000e230: 0x03 0x00 0x00 0x00 0x00 0x00 0x00 0x00

We can see 3 elements: 1, 2, 3.

Following the same method to check the s[1]:

(gdb) n
13 fmt.Println(len(s[1]), cap(s[1]), &s[1][0])
(gdb)
3 5 0xc820010270
14 }
(gdb) x/48xb 0xc820010240
0xc820010240: 0x20 0xe2 0x00 0x20 0xc8 0x00 0x00 0x00
0xc820010248: 0x03 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0xc820010250: 0x03 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0xc820010258: 0x70 0x02 0x01 0x20 0xc8 0x00 0x00 0x00
0xc820010260: 0x03 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0xc820010268: 0x05 0x00 0x00 0x00 0x00 0x00 0x00 0x00
(gdb) x/40xb 0xc820010270
0xc820010270: 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0xc820010278: 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0xc820010280: 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0xc820010288: 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0xc820010290: 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00

Now, we can see s contains all the info of its slice elements, and the elements of s[1] are initialized to 0.

Type assertion and type switch

Sometimes, you may want to know the exact type of an interface variable. In this scenario, you can use type assertion:

x.(T)

x is the variable whose type must be interface, and T is the type which you want to check. For example:

package main

import "fmt"

func printValue(v interface{}) {
	fmt.Printf("The value of v is: %v", v.(int))
}

func main() {
	v := 10
	printValue(v)
}

The running result is:

The value of v is: 10

In the above example, using v.(int) to assert the v is int variable.

if the type assertion operation fails, a running panic will occur: change

fmt.Printf("The value of v is: %v", v.(int))

into:

fmt.Printf("The value of v is: %v", v.(string))

Then executing the program will get following error:

panic: interface conversion: interface is int, not string

goroutine 1 [running]:
panic(0x4f0840, 0xc0820042c0)
......

To avoid this, type assertion actually returns an additional boolean variable to tell whether this operations holds or not. So modify the program as follows:

package main

import "fmt"

func printValue(v interface{}) {
	if v, ok := v.(string); ok {
		fmt.Printf("The value of v is: %v", v)
	} else {
		fmt.Println("Oops, it is not a string!")
	}

}

func main() {
	v := 10
	printValue(v)
}

This time, the output is:

Oops, it is not a string!

Furthermore, you can also use type switch which makes use of type assertion to determine the type of variable, and do the operations accordingly. Check the following example:

package main

import "fmt"

func printValue(v interface{}) {
	switch v := v.(type) {
	case string:
		fmt.Printf("%v is a string\n", v)
	case int:
		fmt.Printf("%v is an int\n", v)
	default:
		fmt.Printf("The type of v is unknown\n")
	}
}

func main() {
	v := 10
	printValue(v)
}

The running result is here:

10 is an int

Compared to type assertion, type switch uses keyword type instead of the specified variable type (such as int) in the parentheses.

References:Effective Go [https://golang.org/doc/effective_go.html];Go – x.(T) Type Assertions [https://codingair.wordpress.com/2014/07/21/go-x-t-type-assertions/];How to find a type of a object in Golang? [http://stackoverflow.com/questions/20170275/how-to-find-a-type-of-a-object-in-golang].

Types

Types in Go are divided into 2 categories: named and unnamed. Besides predeclared types (such as int, rune, etc), you can also define named type yourself. E.g.:

type mySlice []int

Unnamed types are defined by type literal. I.e., []int is an unnamed type.

According to Go spec [https://golang.org/ref/spec#Types], there is an underlying type of every type:

Each type T has an underlying type: If T is one of the predeclared boolean, numeric, or string types, or a type literal, the corresponding underlying type is T itself. Otherwise, T’s underlying type is the underlying type of the type to which T refers in its type declaration.

So, in above example, both named type mySlice and unnamed type []int have the same underlying type: []int.

Go has strict rules of assigning values of variables. For example:

package main

import "fmt"

type mySlice1 []int
type mySlice2 []int

func main() {
	var s1 mySlice1
	var s2 mySlice2 = s1

	fmt.Println(s1, s2)
}

The compilation will complain the following error:

cannot use s1 (type mySlice1) as type mySlice2 in assignment

Although the underlying type of s1 and s2 are same: []int, but they belong to 2 different named types (mySlice1 and mySlice2), so they can’t assign values each other. But if you modify s2’s type to []int, the compilation will be OK:

package main

import "fmt"

type mySlice1 []int

func main() {
	var s1 mySlice1
	var s2 []int = s1

	fmt.Println(s1, s2)
}

The magic behind it is one rule of assignability [https://golang.org/ref/spec#Assignability]:

x’s type V and T have identical underlying types and at least one of V or T is not a named type.

References:Go spec [https://golang.org/ref/spec#Types];Learning Go - Types [http://www.laktek.com/2012/01/27/learning-go-types/];Golang pop quiz [https://twitter.com/davecheney/status/734646224696016901].

Unbuffered and buffered channels

The channel is divided into two categories: unbuffered and buffered.

(1) Unbuffered channelFor unbuffered channel, the sender will block on the channel until the receiver receives the data from the channel, whilst the receiver will also block on the channel until sender sends data into the channel. Check the following example:

package main

import (
	"fmt"
	"time"
)

func main() {
	ch := make(chan int)

	go func(ch chan int) {
		fmt.Println("Func goroutine begins sending data")
		ch <- 1
		fmt.Println("Func goroutine ends sending data")
 	}(ch)

	fmt.Println("Main goroutine sleeps 2 seconds")
	time.Sleep(time.Second * 2)
	
	fmt.Println("Main goroutine begins receiving data")
	d := <- ch
	fmt.Println("Main goroutine received data:", d)

	time.Sleep(time.Second)
}

The running result likes this:

Main goroutine sleeps 2 seconds
Func goroutine begins sending data
Main goroutine begins receiving data
Main goroutine received data: 1
Func goroutine ends sending data

After the main goroutine is launched, it will sleep immediately(“Main goroutine sleeps 2 seconds” is printed), and this will cause main goroutine relinquishes the CPU to the func goroutine(“Func goroutine begins sending data” is printed). But since the main goroutine is sleeping and can’t receive data from the channel, so ch <- 1 operation in func goroutine can’t complete until d := <- ch in main goroutine is executed(The final 3 logs are printed).

(2) Buffered channelCompared with unbuffered counterpart, the sender of buffered channel will block when there is no empty slot of the channel, while the receiver will block on the channel when it is empty. Modify the above example:

package main

import (
	"fmt"
	"time"
)

func main() {
	ch := make(chan int, 2)

	go func(ch chan int) {
		for i := 1; i <= 5; i++ {
			ch <- i
			fmt.Println("Func goroutine sends data: ", i)
		}
		close(ch)
	}(ch)

	fmt.Println("Main goroutine sleeps 2 seconds")
	time.Sleep(time.Second * 2)

	fmt.Println("Main goroutine begins receiving data")
	for d := range ch {
		fmt.Println("Main goroutine received data:", d)
	}
}

The executing result is as follows:

Main goroutine sleeps 2 seconds
Func goroutine sends data: 1
Func goroutine sends data: 2
Main goroutine begins receiving data
Main goroutine received data: 1
Main goroutine received data: 2
Main goroutine received data: 3
Func goroutine sends data: 3
Func goroutine sends data: 4
Func goroutine sends data: 5
Main goroutine received data: 4
Main goroutine received data: 5

In this sample, since the channel has 2 slots, so the func goroutine will not block until it sends the third element.

P.S., “make(chan int, 0)” is equal to “make(chan int)”, and it will create an unbuffered int channel too.

Use govendor to implement vendoring

The meaning of vendoring in Go is squeezing a project’s all dependencies into its vendor directory. Since Go 1.6, if there is a vendor directory in current package or its parent’s directory, the dependency will be searched in vendor directory first. Govendor [https://github.com/kardianos/govendor] is such a tool to help you make use of the vendor feature. In the following example, I will demonstrate how to use govendor step by step:

(1) To be more clear, I clean $GOPATH folder first:

tree
.

0 directories, 0 files

(2) I still use playstack [https://github.com/NanXiao/playstack] project to do a demo, download it:

go get github.com/NanXiao/playstack/play
tree
.
├── bin
│ └── play
├── pkg
│ └── linux_amd64
│ └── github.com
│ └── NanXiao
│ └── stack.a
└── src
 └── github.com
 └── NanXiao
 ├── playstack
 │ ├── LICENSE
 │ └── play
 │ └── main.go
 └── stack
 ├── LICENSE
 ├── README.md
 ├── stack.go
 └── stack_test.go

11 directories, 8 files

The playstack depends on another 3rd-party package: stack [https://github.com/NanXiao/stack].

(3) Install govendor:

go get -u github.com/kardianos/govendor

(4) Change to playstack directory, and run “govendor init” command:

cd src/github.com/NanXiao/playstack/
govendor init
tree
.
├── LICENSE
├── play
│ └── main.go
└── vendor
 └── vendor.json

2 directories, 3 files

You can see there is an additional vendor folder which contains vendor.json file:

cat vendor/vendor.json
{
 "comment": "",
 "ignore": "test",
 "package": [],
 "rootPath": "github.com/NanXiao/playstack"
}

(5) Execute “govendor add +external” command:

govendor add +external
tree
.
├── LICENSE
├── play
│ └── main.go
└── vendor
 ├── github.com
 │ └── NanXiao
 │ └── stack
 │ ├── LICENSE
 │ ├── README.md
 │ └── stack.go
 └── vendor.json

Yeah, the stack project is copied to vendor directory now. Look at vendor/vendor.json file again:

cat vendor/vendor.json
{
 "comment": "",
 "ignore": "test",
 "package": [
 {
 "checksumSHA1": "3v5ClsvqF5lU/3E3c+1gf/zVeK0=",
 "path": "github.com/NanXiao/stack",
 "revision": "bfb214dbdb387d1c561b3b6f305ee0d8444c864b",
 "revisionTime": "2016-04-01T05:28:44Z"
 }
],
 "rootPath": "github.com/NanXiao/playstack"
}

The stack package info has been updated in vendor/vendor.json file.

Notice: “govendor add” copies packages from $GOPATH, and you can use “govendor fetch” to download packages from network. You can verify it through removing stack package in $GOPATH, and execute “govendor fetch github.com/NanXiao/stack” command.

(6) Update playstack in github:

[image: ../_images/govendor-playstack.JPG]image

This time, clean $GOPATH folder and run “go get github.com/NanXiao/playstack/play” again:

go get github.com/NanXiao/playstack/play
tree
.
├── bin
│ └── play
├── pkg
│ └── linux_amd64
│ └── github.com
│ └── NanXiao
│ └── playstack
│ └── vendor
│ └── github.com
│ └── NanXiao
│ └── stack.a
└── src
 └── github.com
 └── NanXiao
 └── playstack
 ├── LICENSE
 ├── play
 │ └── main.go
 └── vendor
 ├── github.com
 │ └── NanXiao
 │ └── stack
 │ ├── LICENSE
 │ ├── README.md
 │ └── stack.go
 └── vendor.json

18 directories, 8 files

Compared to previous case, it is no need to store stack in $GOPATH/src/github.com/NanXiao directory, since playstack has embedded it in its vendor folder.

This is just a simple intro of govendor, for more commands’ usages, you should visit its project home page [https://github.com/kardianos/govendor].

Reference:What does the term “vendoring” or “to vendor” mean for Ruby on Rails? [http://stackoverflow.com/questions/11378921/what-does-the-term-vendoring-or-to-vendor-mean-for-ruby-on-rails];Understanding and using the vendor folder [https://blog.gopheracademy.com/advent-2015/vendor-folder/];Go Vendoring Beginner Tutorial [https://gocodecloud.com/blog/2016/03/29/go-vendoring-beginner-tutorial/].

Use sync.WaitGroup to synchronize goroutines

(This post is a modification edition of Use sync.WaitGroup in Golang [http://nanxiao.me/en/use-sync-waitgroup-in-golang/]).

sync.WaitGroup [https://golang.org/pkg/sync/#WaitGroup] provides a goroutine synchronization mechanism, and used for waiting for a collection of goroutines to finish. In the internal of sync.WaitGroup struct, there is a counter which records how many goroutines need to be waited are living now.

sync.WaitGroup provides 3 methods: Add, Done and Wait. Add method is used to identify how many goroutines need to be waited, and it will add counter value. When a goroutine exits, it must call Done, and it will decrease counter value by 1. The main goroutine blocks on Wait, once the counter becomes 0, the Wait will return, and main goroutine can continue to run.

Let’s see an example:

package main

import (
 "sync"
 "time"
 "fmt"
)

func sleepFun(sec time.Duration, wg *sync.WaitGroup) {
 defer wg.Done()
 time.Sleep(sec * time.Second)
 fmt.Println("goroutine exit")
}

func main() {
 var wg sync.WaitGroup

 wg.Add(2)
 go sleepFun(1, &wg)
 go sleepFun(3, &wg)
 wg.Wait()
 fmt.Println("Main goroutine exit")

}

Because the main goroutine need to wait 2 goroutines, so the argument for wg.Add is 2. The execution result is like this:

goroutine exit
goroutine exit
Main goroutine exit

 _static/file.png

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/ajax-loader.gif

